
Message Switch
Communications

2019 OpenFox® Training and Implementation
Meeting

Ian Warner / Steve Sawatzky

⮚ CPI has been providing communications
interfaces at the State, Federal and Local
message switch level since 1989

⮚ Process
▪ RFP or SOW
▪ Discover, Design, Build, Test
▪ Implementation/Deployment
▪ Support

2

Message Switch Communications

⮚ 3270 or SNA/SDLC for Mainframe communication.

Most have been replaced with MQ Series

⮚ Nlets dual socket protocol
Most have been replaced with Web Services

⮚ DMPP-2020 or Portal 100 protocol for

communicating with 3rd party workstations

Really Old
⮚ Point to Point Bisync – Artic cards
⮚ Honeywell VIP (HDS7)
⮚ JBM Protocol converters
⮚ Motorola Wireless Network Gateway
⮚ Telnet

3

Past Communication

⮚ Web Services for communicating with Nlets and many
other systems such as CCH, Courts, DOC, DNR and DMV

⮚ FOXTalk for shared communication between any
application in the OpenFox® Desktop suite and the
message switch. Also used to communicate with remote
agencies

⮚ MQ Series for communication with mainframes

⮚ ODBC/JDBC/OCI for database communication

⮚ NCIC dual socket protocol

Current Communication

Definition - World Wide Web Consortium (W3C)
A Web service is a software system designed to support
interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using
HTTP with an XML serialization in conjunction with other
Web-related standards.
Source:- https://www.w3.org/TR/ws-gloss

Simple definition: A web service is a function that can be
consumed by client programs over a network generally using
HTTP.

5

Web Services

https://www.w3.org/TR/ws-gloss

SOAP Web Services
Simple Object Access Protocol

⮚ Supports XML exchanges only
⮚ Contract driven (WSDL)
⮚ Built-in support for WS-

standards e.g.
▪ WS-Security
▪ WS-Trust
▪ WS-Addressing
▪ WS-Reliability
▪ WS-Policy

6

Web Services

RESTful Web Services
REpresentational State Transfer

⮚ XML, JSON, Text exchanges
⮚ Simple Contract (WADL)
⮚ Lightweight, less complex and can

add additional standards e.g.
OAuth

⮚ Optimal for mobile
communications

⮚ TCP-IP

⮚ HTTP

⮚ SOAP

⮚ XML

⮚ WSDL + XSD Schema

7

SOAP Web Services

Components Layers

⮚ TCP-IP

⮚ HTTP

⮚ JSON, XML, Text

⮚ WADL

8

RESTful Web Services

Components Layers

⮚Sync Model
▪ DMV Client
▪ DL Photo Client
▪ Concealed Carry Client
▪ Medical Marijuana Registry Client

⮚Async Model
▪ Nlets Web Services
▪ Arkansas mainframe replacement

⮚Sync / Async Model
▪ NCIC Web Services

9

Web Services Implementations

⮚FoxTalk protocol was developed by CPI as a common
communication protocol between applications running in the
OpenFox® Desktop and the OpenFox® Message Switch

⮚FoxTalk is also used to communicate with remote agencies
typically SRVR/DAC or SRVR/XDAC configurations

⮚FoxTalk is an application-to-application protocol for use over
a TCP/IP communications session.

10

FoxTalk

⮚Connection Oriented
Persistent, smallest possible delay for time sensitive exchanges

⮚Message Framing
Consistent, similar to familiar NCIC-2000 framing method

⮚Frame Exchange Methodology
Connect, Device identification, Data Message, Encrypted Data
Message, Positive/Negative Acknowledgments, Heartbeat

⮚Content Negotiation
Frame length, Encryption, Image encoding type, Newline
sequence, max idle time, default connection timeout

⮚Application Acknowledgement
Guaranteed delivery, retries

⮚Connection Maintenance
Hearbeats, half session failure detection

11

FoxTalk Features

⮚ FoxTalk is proprietary
The FoxTalk™ Protocol was developed by CPI to interface
our various client software products with our OpenFox®
Message Switch in a consistent manner. CPI considers the
protocol open to implementation by anyone, and will freely
release the specification.

⮚ Pay CPI for using FoxTalk
There are no royalty or license charges for use of the
FoxTalk™ Protocol.

12

FoxTalk Myths

⮚ Provide FoxTalk Specification

⮚ Decide Message Format
XML (OFML, NIEM, GJXDM) or Text
⮚ Provide OFML Specification if exchanging OFML
⮚ Provide XML schemas if NIEM or GJXDM
⮚ Provide legacy dot delimited format if Text

⮚ Configure SRVR station
IP address, open close times, etc..

⮚ Configure associated DAC/XDAC stations
DACs typically exchange text, XDACs exchange XML

13

FoxTalk Setup for 3rd Party Vendor

14

FoxTalk Configuration

FoxTalk
⮚ Persistent Connection

⮚ Fully configurable
without CPI assistance

⮚ Text, XML or JSON

⮚ Multiple image
formats

Web Services
⮚ Non-Persistent

⮚ Custom per exchange

⮚ Wrapped Text, XML or
JSON messages

⮚ Base 64 encoded
images only

15

FoxTalk vs. Web Services

16

Questions/Suggestions?

Join us in a Birds Of a Feather session!

⮚ Implement and Enforce Standards
▪ Create protocol specs
▪ Create messaging specs

⮚ Make Standards Available
▪ New endpoints are configurable instead of

programmable
▪ CPI spec’s are royalty and license free (FoxTalk)

⮚ Leverage Existing Work
▪ Interfaces can handle many sessions
▪ No per-session effort (or cost)
▪ Implement once, use many times

17

OpenFox® Approach

⮚ Federated message brokering
▪ Star network

⮚ Enforce messaging standards
▪ Must follow protocol and message formatting

specs to communicate

⮚ Translate formats between endpoints
▪ Allow disperate solutions to intercommunicate

⮚ Bridge protocols and formats
▪ Only the hub needs to know how to talk to each

spoke

18

OpenFox® Approach

⮚ Are we old fashioned?
▪ What about peer-to-peer, or directly connected?

⮚ Isn’t new tech made to NOT work this way?
▪ What about Service Oriented Architecture?

⮚ Isn’t forcing everything through the Message
Switch a roadblock?
▪ Why can’t we just call a downstream service directly?

⮚ Every new change must be implemented in the
Switch?
▪ Switches are an impediment to information sharing?

19

Why?

Adding a new service, un-federated:

20

Why? Expansion

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

Adding a new service, un-federated:

21

Why? Expansion

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

Adding a new service, un-federated:

22

Why? Expansion

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

Adding a new service, OpenFox® Approach:

23

Why? Expansion

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

Adding a new service, OpenFox® Approach:

24

Why? Expansion

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

Adding a new service, OpenFox® Approach:

25

Why? Expansion

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

Adding a new service, OpenFox® Approach:

26

Why? Expansion

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

DMV Protocol Upgrade, un-federated:

27

Why? Protocol Change

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

DMV Protocol Upgrade, un-federated:

28

Why? Protocol Change

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

TCP/IP

to

SOAP

DMV Protocol Upgrade, un-federated:

29

Why? Protocol Change

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

TCP/IP

to

SOAP

DMV Protocol Upgrade, un-federated:

1. Modify DMV System
2. Modify Hot Files
3. Modify CCH
4. Modify NCIC (Interface)
5. Modify Nlets (Interface)
6. Modify Regional Systems
7. Modify Mobile Systems
8. Modify Workstation Systems

30

Why? Protocol Change

DMV Protocol Upgrade, OpenFox® Approach:

31

Why? Protocol Change

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

DMV Protocol Upgrade, OpenFox® Approach:

32

Why? Protocol Change

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

TCP/IP

to

SOAP

DMV Protocol Upgrade, OpenFox® Approach:

33

Why? Protocol Change

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

TCP/IP

to

SOAP

DMV Protocol Upgrade, OpenFox® Approach:

1. Modify DMV System

2. Modify OpenFox® Switch

34

Why? Protocol Change

DMV Protocol Upgrade, OpenFox® Approach:

1. Modify DMV System

2. Modify OpenFox® Switch

35

Why? Protocol Change

How has this

shrunk our

budget?

DMV Protocol Upgrade, OpenFox® Approach:

1. Modify DMV System

2. Modify OpenFox® Switch

36

Why? Protocol Change

How has this

shrunk our

budget?

How has this

shrunk our

schedule?

⮚ Consider the Protocol Change

37

Why? Testing Time and Cost

⮚ Consider the Protocol Change
▪ What does testing look like, OpenFox® Approach?

38

Why? Testing Time and Cost

⮚ Consider the Protocol Change
▪ What does testing look like, OpenFox® Approach?

39

Why? Testing Time and Cost

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

⮚ Consider the Protocol Change
▪ What does testing look like, OpenFox® Approach?

40

Why? Testing Time and Cost

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

TCP/IP

to

SOAP

⮚ Consider the Protocol Change
▪ What does testing look like, OpenFox® Approach?

41

Why? Testing Time and Cost

DMV

Hot

Files
NCIC

Nlets

Work

Station

Mobile

REMO

OpenFox®

Switch

CCH

TCP/IP

to

SOAP

⮚ Consider the Protocol Change
▪ What does testing look like, OpenFox® Approach?

1. Test DMV with OpenFox® Switch
2. Done!

42

Why? Testing Time and Cost

⮚ Consider the Protocol Change

43

Why? Testing Time and Cost

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

44

Why? Testing Time and Cost

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

45

Why? Testing Time and Cost

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

46

Why? Testing Time and Cost

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

TCP/IP

to

SOAP

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

47

Why? Testing Time and Cost

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

TCP/IP

to

SOAP

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

1. Test DMV with Hot Files
2. Test DMV with CCH
3. Test DMV with NCIC
4. Test DMV with Nlets
5. Test DMV with Regionals
6. Test DMV with Mobiles
7. Test DMV with Workstations
8. Done!

48

Why? Testing Time and Cost

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

1. Test DMV with Hot Files
2. Test DMV with CCH
3. Test DMV with NCIC
4. Test DMV with Nlets
5. Test DMV with Regionals
6. Test DMV with Mobiles
7. Test DMV with Workstations
8. Done!

49

Why? Testing Time and Cost

What did this

do to our

budget?

⮚ Consider the Protocol Change
▪ What does testing look like, unfederated?

1. Test DMV with Hot Files
2. Test DMV with CCH
3. Test DMV with NCIC
4. Test DMV with Nlets
5. Test DMV with Regionals
6. Test DMV with Mobiles
7. Test DMV with Workstations
8. Done!

50

Why? Testing Time and Cost

What did this

do to our

budget?

What did this

do to our

schedule?

⮚ What else can change without a central control?
▪ Can an endpoint alter their message format?

▪ How will everyone else be notified of the change?
▪ How long will it take for them to be able to consume it?

▪ Can new services implement new protocols?
▪ How long will it take everyone else to interface?

▪ Are there optional elements in the messages that
endpoints may implement differently?
▪ How will everyone find the data important to them?

▪ How many other system endpoints would be impacted
by these sorts of event?

▪ How will we be able to implement and test all the
possible combinations?

51

Why? Other Impacts

If a system is exposing messaging details to each endpoint:

52

Value Add?

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

Non-OpenFox

Message

Switch

What is the difference if there is NO system?

53

Value Add?

DMV

Hot

Files

CCH

NCIC

Nlets

Work

Station

Mobile

REMO

⮚ Implementing an OpenFox® message switch that:
▪ Enforces messaging formats and protocols
▪ Translates formats and bridges protocols

⮚ Gets results that:
▪ Allow message format changes with MUCH less impact
▪ Allow protocol changes with MUCH less impact
▪ GREATLY reduced development budget and schedule
▪ GREATLY reduced testing budget and schedule
▪ GREATLY simplify our solution

54

Value Add

⮚ Our example was overly simplified

⮚ The real world is worse

▪ How many boxes do YOU have for mobile vendors?
▪ How many boxes do YOU have for regional systems?
▪ Can you imagine all of your regional systems having to

change because DMV switched formats or protocols?
▪ How long would development and testing take?
▪ How much would it cost?

55

Value Add

⮚ What happens if we have 3 services
▪ And we add a 4th

We go from 3 interfaces….

56

Value Add? Unfederated

Service

1

Service

2

Service

3

⮚ What happens if we have 3 services
▪ And we add a 4th

…. to 6 interfaces. 3 new ones to add 1 service

57

Value Add? Unfederated

Service

1

Service

2

Service

3

Service

4

⮚ What if we have 4 services
▪ And we add a 5th

We start with our 6 interfaces….

58

Value Add? Unfederated

Service

1

Service

2

Service

3

Service

4

⮚ What if we have 4 services
▪ And we add a 5th

And add 4 more, for a total of 10

59

Value Add? Unfederated

Service

1

Service

2

Service

3

Service

4

Service

5

60

Value Add? Unfederated

Number of

Services

Number of

Interfaces

Delta

3 3

4 6 3

5 10 4

61

Value Add? Unfederated

Number of

Services

Number of

Interfaces

Delta

3 3

4 6 3

5 10 4

62

Value Add? Unfederated

Number of

Services

Number of

Interfaces

Delta

3 3

4 6 3

5 10 4

Technical Debt

⮚ The more you finish, the more you have to do!
▪ Adding new services gets more and more difficult
▪ Adding new services takes longer and longer
▪ Adding new services costs more and more

⮚ What is it like going from 9 services to 10?
▪ You must implement 9 new interfaces
▪ You will have a total of 45 interfaces to maintain

63

Unfederated - Technical Debt

⮚ This is EXACTLY what the industry means by the
term “Technical Debt”

64

Unfederated - Technical Debt

65

Unfederated - Technical Debt

66

Unfederated - Technical Debt

67

Unfederated - Technical Debt

• Who can keep track of all this?

68

Unfederated - Technical Debt

• Who can keep track of all this?
• Who can test all this?

69

Unfederated - Technical Debt

• Who can keep track of all this?
• Who can test all this?
• Who can schedule all this?

70

Unfederated - Technical Debt

• Who can keep track of all this?
• Who can test all this?
• Who can schedule all this?

⮚ What does the chart look like, with the OpenFox®
Approach?

71

OpenFox® Approach

⮚ What does the chart look like, with the OpenFox®
Approach?

72

OpenFox® Approach

Number of

Services

Number of

Interfaces

Delta

3 3

4 4 1

5 5 1

⮚ What does the chart look like, with the OpenFox®
Approach?

73

OpenFox® Approach

Number of

Services

Number of

Interfaces

Delta

3 3

4 4 1

5 5 1

⮚ What does the chart look like, with the OpenFox®
Approach?

74

OpenFox® Approach

⮚ What does the chart look like, with the OpenFox®
Approach?

75

OpenFox® Approach

⮚ How do the charts compare to each other?

76

OpenFox® vs Unfederated

⮚ How do the charts compare to each other?

77

OpenFox® vs Unfederated

UnfederatedOpenFox

⮚ Remember our Technical Debt Chart?

78

OpenFox® vs Unfederated

⮚ The OpenFox® Approach is Low Debt

79

OpenFox® vs Unfederated

UnfederatedOpenFox

High Debt

Low Debt

Interest
on

Debt

⮚ What does the chart look like, with the OpenFox®
Approach?
▪ The total interface count equals the total services

count
▪ No interest due on technical debt
▪ Every service you add requires adding 1 interface

▪ And ONLY one interface!

⮚ We saved 170 interfaces with our approach
▪ 170 development cycles
▪ 170 test cases to be run through
▪ 170 events to coordinate at cutover

80

OpenFox® Approach

⮚ Requests for new projects where:
▪ The new service defines a new message format
▪ The new service defines a new web service
▪ The new service doesn’t leverage existing formats
▪ The new service doesn’t leverage existing protocols

81

Industry Trend - Building Tech Debt

⮚ Requests for new projects where:
▪ The new service defines a new message format
▪ The new service defines a new web service
▪ The new service doesn’t leverage existing formats
▪ The new service doesn’t leverage existing protocols

82

Industry Trend - Building Tech Debt

⮚ Requests for new projects where:
▪ The new service defines a new message format
▪ The new service defines a new web service
▪ The new service doesn’t leverage existing formats
▪ The new service doesn’t leverage existing protocols

83

Industry Trend - Building Tech Debt

⮚ Requests for new projects where:
▪ The new service defines a new message format
▪ The new service defines a new web service
▪ The new service doesn’t leverage existing formats
▪ The new service doesn’t leverage existing protocols

84

Industry Trend - Building Tech Debt

⮚ Requests for new projects where:
▪ The new service defines a new message format
▪ The new service defines a new web service
▪ The new service doesn’t leverage existing formats
▪ The new service doesn’t leverage existing protocols

85

Industry Trend - Building Tech Debt

⮚ Benefits information sharing, does not impede it

⮚ Increases consistency and quality of information

⮚ Provides a flexible and extensible solution

⮚ Leverages work already completed

⮚ Doesn’t pay interest on expensive technical debt
▪ Keep the technical debt low!
▪ Shortcuts today are expensive tomorrow

86

OpenFox® Approach

⮚ Benefits information sharing, does not impede it

⮚ Increases consistency and quality of information

⮚ Provides a flexible and extensible solution

⮚ Leverages work already completed

⮚ Doesn’t pay interest on expensive technical debt
▪ Keep the technical debt low!
▪ Shortcuts today are expensive tomorrow

87

OpenFox® Approach - Gets it DONE!

88

Thank you!

Thank You!

